
MODULE IV

• Authentication requirements- Authentication
functions- Message authentication codes-
Hash functions- SHA -1, MD5, Security of Hash
functions and MACs- Authentication
protocols-Digital signatures-Digital signature
standards.

AUTHENTICATION REQUIREMENTS

• Disclosure

• Traffic analysis

• Masquerade

• Content modification

• Sequence modification

• Timing modification

• Source repudiation

• Destination repudiation

Disclosure

• Release of message contents to any person or
process not possessing the appropriate
cryptographic key.

Traffic analysis

• Discovery of the pattern of traffic between
parties.

• In a connection oriented application, the
frequency and duration of connections could
be determined.

• In either a connection-oriented or
connectionless environment, the number and
length of messages between parties could be
determined.

Masquerade:

• Insertion of messages into the network from a
fraudulent source.

• includes the creation of messages by an
opponent that are purported to come from an
authorized entity.

• Also included are fraudulent
acknowledgments of message receipt or non
receipt by someone other than the message
recipient.

Content modification

• Changes to the contents of a message,
including insertion, deletion, transposition,
and modification.

Sequence modification

• Any modification to a sequence of messages
between parties, including insertion, deletion,
and reordering.

Timing modification

• Delay or replay of messages.

• In a connection-oriented application, an entire
session or sequence of messages could be a
replay of some previous valid session, or
individual messages in the sequence could be
delayed or replayed.

• In a connectionless application, an individual
message (e.g:- datagram) could be delayed or
replayed.

• Source repudiation

– Denial of transmission of message by source.

• Destination repudiation:

– Denial of receipt of message by destination.

– Message authentication is a procedure to verify
that received messages come from the alleged
source and have not been altered.

– Message authentication may also verify
sequencing and timeliness.

AUTHENTICATION FUNCTIONS

• The types of functions that may be used to
produce an authenticator may be grouped
into three classes

– Message encryption

– Message authentication code (MAC)

– Hash function:

(1) Message encryption - The cipher text of the

entire message serves as its
authenticator.

• Message encryption by itself can provide a
measure of authentication.

• The analysis differs for symmetric and public-
key encryption schemes.
– Symmetric Encryption

– Public-Key Encryption: Confidentiality

– Public-Key Encryption: Authentication

– Public-Key Encryption: Confidentiality and authentication

Symmetric Encryption

Internal Error Control - Append an error-

detecting code, or frame check sequence (FCS) or
checksum with the message

External error control

TCP segment

2. Public-Key Encryption: Confidentiality

3. Public-Key Encryption: Authentication

4. Public-Key Encryption: Confidentiality and
authentication

(ii) Message authentication code
(1)

• An authentication technique involves the use
of a secret key to generate a small fixed-size
block of data, known as a cryptographic
checksum or MAC that is appended to the
message.

• two communicating parties, say A and B, share
a common secret key K.

Message authentication code (2)

• When A has a message to send to B, it
calculates the MAC as a function of the
message and the key:

MAC = C(K, M)

Where M = input message

C = MAC function

K = shared secret key

MAC = message authentication code

Message authentication code (3)

• message plus MAC are transmitted to the
intended recipient.

• recipient performs the same calculation on
the received message, using the same secret
key, to generate a new MAC.

• received MAC is compared to the calculated
MAC as shown in the figure

Message authentication code (4)

(iii) Hash Function

• A variation on the message authentication
code is the one-way hash function.

• As with the message authentication code, a
hash function accepts a variable-size message
M as input and produces a fixed-size output,
referred to as a hash code H(M).

• Unlike a MAC, a hash code does not use a key
but is a function only of the input message.

• The hash code is also referred to as a message
digest or hash value.

• The hash code is a function of all the bits of
the message and provides an error-detection
capability:

• A change to any bit or bits in the message
results in a change to the hash code.

HASH FUNCTIONS

• A hash value h is generated by a function H of
the form h = H(M), where

M is a variable-length message

H(M) is the fixed-length hash value.

• The hash value is appended to the message at
the source at a time when the message is
assumed or known to be correct.

• The receiver authenticates that message by re
computing the hash value.

• Because the hash function itself is not
considered to be secret, some means is
required to protect the hash value.

Requirements for a Hash
Function(1)

• The purpose of a hash function is to produce a
"fingerprint" of a file, message, or other block
of data.

• To be useful for message authentication, a
hash function H must have the following
properties:

Requirements for a Hash
Function(2)

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any
given x, making both hardware and software
implementations practical.

4. For any given value h, it is computationally
infeasible to find x such that H(x) = h. This is
sometimes referred to in the literature as the
one-way property.

Requirements for a Hash
Function(3)

• For any given block x, it is computationally
infeasible to find y not equal to x such that
H(y) = H(x). This is sometimes referred to as
weak collision resistance.

• It is computationally infeasible to find any
pair (x, y) such that H(x) = H(y). This is
sometimes referred to as strong collision
resistance.

• The variety of ways in which a hash code can
be used to provide message authentication, as
follows:

a)

• The message plus concatenated hash code is
encrypted using symmetric encryption.

• This is identical in structure to the internal
error control strategy.

• The same line of reasoning applies: Because
only A and B share the secret key, the message
must have come from A and has not been
altered.

• The hash code provides the structure or
redundancy required to achieve
authentication.

• Because encryption is applied to the entire
message plus hash code, confidentiality is also
provided.

b)

• Only the hash code is encrypted, using
symmetric encryption.

• This reduces the processing burden for those
applications that do not require
confidentiality.

c)

• Only the hash code is encrypted, using public-
key encryption and using the sender's private
key. As with (b), this provides authentication.

• It also provides a digital signature, because
only the sender could have produced the
encrypted hash code. In fact, this is the
essence of the digital signature technique.

d)

• If confidentiality as well as a digital signature
is desired, then the message plus the private-
key-encrypted hash code can be encrypted
using a symmetric secret key. This is a
common technique.

e)

• It is possible to use a hash function but no encryption for
message authentication. The technique assumes that the two
communicating parties share a common secret value S. A
computes the hash value over the

• concatenation of M and S and appends the resulting hash
value to M.

• Because B possesses S, it can re compute the hash value to
verify. Because the secret value itself is not sent, an opponent
cannot modify an intercepted message and cannot generate a
false message.

f)

• Confidentiality can be added to the approach
of (e) by encrypting the entire message plus
the hash code.

SECURE HASH ALGORITHM

• developed by the National Institute of
Standards and Technology (NIST).

• SHA-1 produces a hash value of 160 bits. With
hash value lengths of 256, 384, and 512 bits,
known as SHA-256, SHA-384, and SHA-512.

SHA-512 Logic

• The algorithm takes as input a message with a
maximum length of less than 2128 bits

• and produces as output a 512-bit message
digest.

• input is processed in 1024-bit blocks.

SHA-1 Logic

• The algorithm takes as input a message with a
maximum length of less than 264 bits

• and produces as output a 160-bit message
digest.

• input is processed in 512-bit blocks.

Processing steps:

Step 1:Append padding bits

Step 2: Append length

Step 3: Initialize MD buffer

Step 4: Process message in 512-bit blocks

Step 5: Output

Step 1:Append padding bits

• The message is padded so that its length is
congruent to 448 modulo 512

• Padding is always added, even if the message
is already of the desired length.

• Thus, the number of padding bits is in the
range of 1 to 512.

• The padding consists of a single 1-bit followed
by the necessary number of 0-bits.

Step 2: Append length

• A block of 64 bits is appended to the message.

• This block is treated as an unsigned 64-bit
integer (most significant byte first) and
contains the length of the original message
(before the padding).

Step 3: Initialize MD buffer

• A 160-bit buffer is used to hold intermediate and
final results of the hash function.

• The buffer can be represented as five 32-bit
registers (A, B, C, D, E).

• These registers are initialized to 32-bit integers
(hexadecimal values):

• These values are stored in big-endian format, which
is the most significant byte of a word in the low-
address (leftmost) byte position

Step 4: Process message in 512-bit
(16-word) blocks

• The heart of the algorithm is a module that
consists of four rounds of processing of 20
steps each

• this module is labeled f in figure.

• Each round takes as input the 512-bit block
being processed (Yq) & the 160 bit buffer value
value A B C D E , and updates the contents of
the buffer.

•

• At input to the first round, the buffer has the
value of the intermediate hash value, Hi-1.

• Each round t makes use of a 64-bit value Wt

derived from the current 1024-bit block being
processed (Mi).

• These values are derived using a message
schedule described subsequently.

• Each round also makes use of an additive
constant Kt where 0 ≤ t≤79 indicates one of
the 80 steps across 4 rounds.

• Output of the fourth round is added to the
input to the first round (CVq+1)

• Addition is done independently for each of the
five words in the buffer with each of the
corresponding words in Cvq ,using addition
modulo 232

• The output of the eightieth round is added to
the input to the first round (Hi-1)to produce Hi.

• The addition is done independently for each
of the eight words in the buffer with each of
the corresponding words in Hi-1 using addition
modulo 264

Step 5: Output

• After all L 512-bit blocks have been processed;
the output from the Lth stage is the 160-bit
message digest.

• IV = initial value of the ABCDE buffer, defined in step 3

• abcdeq = the output of the last round of processing of the qth

message block

• N = the number of blocks in the message (including padding
and length fields)

• SUM32 = Addition modulo 232 performed separately on each
word of the pair of inputs

• MD = final message digest value

Elementary SHA Operation (single
step)

SHA-1 compression function

MD5 message digest algorithm

• developed by Ron Rivest

• most widely used secure hash algorithm.

• takes as input a message of arbitrary length
and produces as output a 128-bit message
digest.

• input is processed in 512-bit blocks

Step 1: Appending padding bits.

• The message is padded so that its length in
bits is congruent to 448 modulo 512

• length of the padded message is 64 bits less
than an integer multiple of 512 bits.

• Padding is always is added, even if the
message is already of the desired length.

• padding consists of a single 1-bit followed by
the necessary number of 0-bits.

Message digest generation using
MD5

Step 2: Append length

• A 64-bit representation of the length in bits of the
original message

• If the original length is greater than 264, then only
the low-order 64 bits of the length are used.

• field contains the length of the original message,
modulo 264

• expanded message is represented as the sequence of
512-bit blocks Y0,Y1,…..YL-1so that the total length of
the expanded message is L × 512 bits.

Step 3: Initialize MD buffer

• A 128-bit buffer is used to hold intermediate
and final results of the hash function.

• The buffer can be represented as four 32-bit
registers (A, B, C, D).

• These values are stored in little-endian format,
which is the least significant byte of a word in
the low-address byte position.

MD5 processing of a single 512-bit block (MD5
compression function)

Step 4: Process message in 512-bit
(16-word) blocks.

• The heart of the algorithm is a compression
algorithm that consists of four “rounds” of
processing; this module is labeled HMD5.

• The four rounds have the similar structure, but each
uses a different primitive logical function, referred to
as F, G, H, and I in the specification.

• Each round takes as input the current 512-bit block
being processed (Yq) and the 128-bit buffer value
ABCD and updates the contents of the buffer.

Step 5: Output

• After all L 512-bit blocks have been processed,
the output from the Lth stage is the 128-bit
message digest

SECURITY OF HASH FUNCTIONS
AND MACS

• Attacks on hash functions and MACs is
grouped into two categories:

1. Brute-force attacks

2. Cryptanalysis.

• The nature of brute-force attacks differs
somewhat for hash functions and MACs.

1. Brute force attack on Hash
Functions

• The strength of a hash function against brute-
force attacks depends solely on the length of
the hash code produced by the algorithm.

• There are three desirable properties of hash
functions:

One-way property

Weak collision resistance

Strong collision resistance

Properties of hash functions

• One-way property: For any given code h, it is
computationally infeasible to find x such that
H(x) = h.

• Weak collision resistance: For any given block
x, it is computationally infeasible to find y≠ x
with H(y) = H(x).

• Strong collision resistance: It is
computationally infeasible to find any pair
(x, y) such that H(x) = H(y).

For a hash code of length n, the level of effort
required, is proportional to the
following:

• One way 2n

• Weak collision resistance 2n

• Strong collision resistance 2n/2

• If strong collision resistance is required, then
the value 2n/2 determines the strength of the
hash code against brute-force attacks.

2. Message Authentication Codes

• A brute-force attack on a MAC is a more
difficult undertaking because it requires
known message - MAC pairs.

• To proceed, we need to state the desired
security property of a MAC algorithm, which
can be expressed as follows:

• Computation resistance: Given one or more
text-MAC pairs [xi, C(K, xi)], it is
computationally infeasible to compute any
text-MAC pair [x, C(K, x)] for any new input
x≠xi.

• The attacker would like to come up with the
valid MAC code for a given message x. There
are two lines of attack possible:

• Attack the key space

• Attack the MAC value

2. Cryptanalysis

• The way to measure the resistance of a hash

or MAC algorithm to cryptanalysis is to compare
its strength to the effort required for a brute-
force attack.

• That is, an ideal hash or MAC algorithm will
require a cryptanalytic effort greater than or
equal to the brute-force effort.

a. Cryptanalysis on Hash
Functions

• The hash function takes an input message and
partitions it into L fixed-sized blocks of b bits
each.

• If necessary, the final block is padded to b bits.

• The final block also includes the value of the
total length of the input to the hash function.

• The inclusion of the length makes the job of
the opponent more difficult.

• The hash algorithm involves repeated use of a
compression function, f that takes two inputs (an n-
bit input from the previous step, called the chaining
variable, and a b-bit block) and produces an n-bit
output.

• At the start of hashing, the chaining variable has an
initial value that is specified as part of the algorithm.

• The final value of the chaining variable is the hash
value.

• Often, b>n; hence the term compression.

• The hash function can be summarized as follows:

CVo = IV = initial n-bit value

CVi = f(CVi1, Yi1) 1 ≤ I ≤ L

H(M) = CVL

• where the input to the hash function is a message M
consisting of the blocks Yo, Y1,..., YL1.

• Cryptanalysis of hash functions focuses on the
internal structure of f and is based on
attempts to find efficient techniques for
producing collisions for a single execution of f.

• Once that is done, the attack must take into
account the fixed value of IV.

• The attack on f depends on exploiting its
internal structure.

Message Authentication Codes

• There is much more variety in the structure of
MACs than in hash functions

• so it is difficult to generalize about the
cryptanalysis of MACs.

DIGITAL SIGNATURES

Requirements

• Message authentication protects two parties who
exchange messages from any third party.

• However, it does not protect the two parties against
each other.

• Several forms of dispute between the two are
possible.

• For example, suppose that John sends an
authenticated message to Mary, using one of the
schemes. Consider the following disputes that could
arise:

1. Mary may forge a different message and claim that it
came from John

2. John can deny sending the message.

• In situations where there is not complete trust
between sender and receiver, something more than
authentication is needed.

• The solution to this problem is the digital signature.

• The digital signature is analogous to the handwritten
signature.

Properties of Digital Signature:

• It must verify the author and the date and
time of the signature.

• It must authenticate the contents at the time
of the signature.

• It must be verifiable by third parties, to
resolve disputes.

Thus, the digital signature function includes
the authentication function.

Requirements for a digital
signature (1)

• The signature must be a bit pattern that
depends on the message being signed.

• The signature must use some information
unique to the sender, to prevent both forgery
and denial.

• It must be relatively easy to produce the
digital signature.

Requirements for a digital
signature (2)

• It must be relatively easy to recognize and
verify the digital signature.

• It must be computationally infeasible to forge
a digital signature, either by constructing a
new message for an existing digital signature
or by constructing a fraudulent digital
signature for a given message.

• It must be practical to retain a copy of the
digital signature in storage.

Variety of approaches has been proposed for the
digital signature function.

These approaches fall into two categories:

• Direct Digital Signature

• Arbitrated Digital Signature

Direct Digital Signatures

• involve only sender & receiver

• assumed receiver has sender’s public-key

• digital signature made by sender signing
entire message or hash with private-key

• can encrypt using receivers public-key

• important that sign first then encrypt message
& signature

• security depends on sender’s private-key

Digital Signature Model

Arbitrated Digital Signatures

• involves use of an arbiter who

– validates any signed message

– then dated and sent to recipient

• requires suitable level of trust in arbiter

• can be implemented with either private or
public-key algorithms

• arbiter may or may not see message

Authentication Protocols

• used to convince parties of each others
identity and to exchange session keys

• may be one-way or mutual

• key issues are

– confidentiality – to protect session keys

– timeliness – to prevent replay attacks

• published protocols are often found to have
flaws and need to be modified

Mutual authentication

• Such protocols enable communicating parties
to satisfy themselves mutually about each
others identity & to exchange session keys

Examples of replay attacks

• Simple replay - opponent simply copies a
message & replays it later

• Repetition that can be logged: - opponent can
replay a timestamped message within the
valid time window.

• Repetition that cannot be detected

• Backward replay without modification

1. Using Symmetric Encryption

• Can use a two-level hierarchy of keys

• usually with a trusted Key Distribution Center
(KDC)

– each party shares own master key with KDC

– KDC generates session keys used for connections
between parties

– master keys used to distribute these to them

Needham-Schroeder Protocol (1)
• Used by 2 parties who both trust a common key

server

• original third-party key distribution protocol

• for session between A & B mediated by KDC

• protocol overview is:

1. A->KDC: IDA || IDB || N1

2. KDC -> A: EKa[Ks || IDB || N1 || EKb[Ks||IDA]]

3. A -> B: EKb[Ks||IDA]

4. B -> A: EKs[N2]

5. A -> B: EKs[f(N2)]

Needham-Schroeder Protocol(2)

• used to securely distribute a new session key
for communications between A & B

• but is vulnerable to a replay attack if an old
session key has been compromised
– then message 3 can be resent convincing B that is

communicating with A

• modifications to address this require:
– timestamps

– using an extra nonce

2. Using Public-Key Encryption

• have a range of approaches based on the use
of public-key encryption

• need to ensure have correct public keys for
other parties

• using a central Authentication Server (AS)

• various protocols exist using timestamps or
nonces

Denning Authentication Server
Protocol

• Denning presented the following:
1. A -> AS: IDA || IDB

2. AS -> A: EPRas[IDA||PUa||T] || EPRas[IDB||PUb||T]

3. A -> B: EPRas[IDA||PUa||T] || EPRas[IDB||PUb||T] ||
EPUb[EPRa[Ks||T]]

• Note that to avoid the risk of exposure by the AS
session key is chosen by A, hence AS need not be
trusted to protect it

• timestamps prevent replay attacks but require
synchronized clocks

One-Way Authentication

• The recipient wants some assurance that the
message is from the alleged sender. One-Way
Authentication addresses these requirements.

• Required when sender & receiver communicate in
connectionless mode (eg. email)

• Have header in clear text so can be delivered by
email systems

• May want contents of body protected & sender
authenticated

One-Way Authentication Using Public-
Key Approaches

• have seen some public-key approaches

• if confidentiality is major concern, can use:

A->B: EPUb[Ks] || EKs[M]

– has encrypted session key, encrypted message

• if authentication needed use a digital signature
with a digital certificate:

A->B: M || EPRa[H(M)] || EPRa[T||IDA||PUa]

– with message, signature, certificate

Digital Signature Standard (DSS)

• US Govt approved signature scheme

• designed by NIST & NSA in early 90's

• revised in 1993, 1996 & then 2000

• uses the SHA hash algorithm

• DSS is the standard, DSA is the algorithm

• 2 approaches
• RSA approach (SHA, RSA)

• DSS or DSA Approach

DSS vs RSA Signatures

DSA Key Generation

• have shared global public key values (p,q,g):

– choose 160-bit prime number q

– choose a large prime p with 2L-1 < p < 2L

• where L= 512 to 1024 bits and is a multiple of 64

• such that q is a 160 bit prime divisor of (p-1)

– choose g = h(p-1)/q

• where 1<h<p-1 and h(p-1)/q mod p > 1

• users choose private & compute public key:
– choose random private key: x<q

– compute public key: y = gx mod p

DSA Signature Creation

to sign a message M the sender:

generates a random signature key k, k<q

nb. k must be random, be destroyed after use,
and never be reused

then computes signature pair:
r = (gk mod p)mod q

s = [k-1(H(M)+ xr)] mod q

sends signature (r,s) with message M

DSA Signature Verification

• having received M & signature (r,s)

• to verify a signature, recipient computes:
w = s-1 mod q

u1= [H(M)w]mod q

u2= (rw)mod q

v = [(gu1 yu2)mod p]mod q

• if v=r then signature is verified

DSS Overview

